Capitulo 3
Ingenieria inversa

1. Introduccion

1.1 Presentacion

La técnica de ingenierfa inversa (reverse engineering en inglés) consiste en estu-
diar un objeto (en nuestro caso un malware) para comprender su funciona-
miento. En informadtica, eso se traduce por analizar el cédigo de maquina de
un programa; en nuestro caso, un malware. Dado que los malwares no se
difunden con su cédigo fuente y que no es posible encontrar cédigos de
malwares desarrollados en C o en C+ +, es necesario utilizar técnicas de inge-
nierfa inversa para estudiar su funcionamiento interno. El analista estudiar4 el
codigo en ensamblador del malware, funcién tras funcién.

Este c6digo en ensamblador esta disponible desensamblando el archivo bina-
rio.

El cédigo en ensamblador no es tan facil de leer como el cédigo fuente. En
efecto, se trata de un lenguaje de bajo nivel que manipula directamente
instrucciones CPU y la memoria fisica.

182

1.2

Ciberseguridad y malwares

Deteccion, analisis y Threat Intelligence

Vamos a interesarnos principalmente en el ensamblador x86 (de 32 bits),
aunque una pequea seccién presentara las principales diferencias entre el x86
y el x64 (de 64 bits) desde el punto de vista de la ingenierfa inversa. En la
actualidad, el 80 % de malwares estdn compilados en 32 bits, para poder
impactar en el mayor nimero de maquinas posible (los sistemas Windows de
64 bits admiten los archivos binarios en 32 bits, pero no a la inversa).

Este capitulo explicard como leer e interpretar el ensamblador, las herramien-
tas que se utilizan para ayudar en el anélisis, asi como trucos para facilitarlo.

Legislacion

En muchos paises, las técnicas de ingenieria inversa estan reguladas por las
leyes. Se pueden hacer muchos usos de esta disciplina:

— Espionaje industrial: ciertas empresas utilizan la ingenierfa inversa para
comprender los productos desarrollados por sus competidores y robar su
conocimientos técnicos.

— Destruccién de proteccién anticopia: algunas personas utilizan estas técni-
cas para poder copiar videojuegos o copiar musica bajo la proteccién de un
sistema anticopia (DRM, Digital Rights Management).

— Interoperabilidad: los desarrolladores utilizan la ingenierfa inversa para rees-
cribir programas de forma que los productos puedan utilizarse en platafor-
mas no compatibles con un fabricante (es el caso de muchos controladores
de Linux).

Esta lista no es, evidentemente, exhaustiva, aunque permite comprender que
esta técnica puede utilizarse para buenos o malos propésitos.

El uso de las técnicas de ingenierfa inversa para analizar malwares se ha
convertido en una préctica perfectamente legal. He aqui un fragmento del
articulo en castellano que corresponde a nuestro caso (Articulo 96 de la ley de
propiedad intelectual):

«La proteccién prevista en la presente Ley se aplicard a cualquier forma de
expresién de un programa de ordenador (...) salvo aquellas creadas con el fin
de ocasionar efectos nocivos a un sistema informaético».

© Editions ENI - All rights reserved

Ingenieria inversa 183
Capitulo 3

2. ¢Qué es un proceso de Windows?

2.1 Introduccion

Cuando se ejecuta un proceso en Windows, el sistema operativo va a crear
automdticamente un espacio en la memoria para este y un primer subproceso
(thread). Todos los procesos en ejecucién disponen de una estructura llamada
Process Environment Block (PEB) que los describe. Cada proceso dispone de uno
o vario threads. Cada thread posee su propia pila (stack, ver capitulo
Técnicas de ofuscacién) y una estructura que lo define llamada TEB (Thread
Environment Block). Los threads pueden acceder a la memoria del proceso. He
aqui un esquema que resume un proceso:

Proceso
PEB Memoria / Heap
Thread #1
| stack #1 | TEB
Thread #2
| stack #2 | TEB
Thread #x
|Slack #x | TEB

2.2 Process Environment Block

Se puede leer el contenido del PEB de un proceso. He aqui un ejemplo de PEB
de un proceso cmd.exe visto por el depurador de Microsoft: WinDBG. La
direccién de memoria en la que se encontrard la estructura PEB esta almacena-
daen $PEB:

0:001> r $PEB
Speb=0000000301292000

184

Ciberseguridad y malwares

Deteccion, analisis y Threat Intelligence

A partir de esta direccién se puede comprobar el contenido de la estructura

PEB:

0:001> dt _PEB 0000000301292000

ntdll! PEB
+0x000 InheritedAddressSpace : 0 ''
+0x001 ReadImageFileExecOptions o "
+0x002 BeingDebugged Ox1 '!'
+0x003 BitField 0x4 "'
+0x003 ImageUsesLargePages : 0y0
+0x003 IsProtectedProcess 0y0
+0x003 IsImageDynamicallyRelocated : 0Oyl
+0x003 SkipPatchingUser32Forwarders 0y0
+0x003 IsPackagedProcess 0y0
+0x003 IsAppContainer 0y0
+0x003 IsProtectedProcessLight : 0yO0
+0x003 IsLongPathAwareProcess 0y0
+0x004 PaddingO [4] "
+0x008 Mutant Oxffffffff fEEEEFEF Void
+0x010 ImageBaseAddress 0x00007££7 da850000 Void
+0x018 Ldr : 0x00007ffe 98e753c0 _PEB LDR DATA
+0x020 ProcessParameters 0x000001e6 84delbe0 _RTL_USER_PROCESS_PARAMETERS
+0x028 SubSystemData (null)
+0x030 ProcessHeap 0x000001e6°84de0000 Void
+0x038 FastPebLock 0x00007ffe 98e74£fc0 _RTL_CRITICAL_SECTION

[...]

Por ejemplo, en el offset 0x020 se encuentra la estructura

_RTL_USER_PROCESS_PARAMETERS, que contiene los pardmetros del
proceso. Esta se encuentra en la d1recc1on 0x000001e6" 84delbe0. He aqui su

contenido:

0:001> dt RTL USER PROCESS PARAMETERS 0x000001e684delbe0

ntdll!
+0x000
+0x004
+0x008
+0x00c
+0x010
+0x018
+0x020
+0x028
+0x030
+0x038
+0x050
+0x060
+0x070
+0x080

MaximumLength
Length

Flags
DebugFlags
ConsoleHandle
ConsoleFlags
StandardInput
StandardOutput
StandardError

CurrentDirectory :

Dl11lPath
ImagePathName
CommandLine
Environment

_RTL USER PROCESS PARAMETERS

0x788

0x788

0x6001

0

0x00000000°00000050 Void

0

0x00000000 00000054 Void

0x00000000°00000058 Void

0x00000000°0000005¢c Void

_CURDIR

_UNICODE STRING ""

_UNICODE STRING "C:\WINDOWS\system32\cmd.exe"
_UNICODE STRING ""C:\WINDOWS\system32\cmd.exe" "
0x000001e6"84df6380 Void

© Editions ENI - All rights reserved

2.3

3.1

Ingenieria inversa
Capitulo 3

Como se puede comprobar, la linea de comandos esté disponible en el despla-
zamiento (offser) 0x70 de esta estructura en el proceso que se esté ejecutando.

WinDBG proporciona el comando ! PEB que lee y formatea todos los elemen-
tos pertinentes del PEB y los muestra al usuario.

Thread Environment Block

El mismo ejercicio que para el PEB se puede realizar con la estructura TEB:

0:001> r STEB
$teb=0000000301299000

0:001> dt TEB 0000000301299000
ntdll! TEB

+0x000 NtTib : NT TIB

+0x038 EnvironmentPointer : (null)

+0x040 ClientId : CLIENT ID
+0x050 ActiveRpcHandle : (null)

+0x058 ThreadLocalStoragePointer : (null)
+0x060 ProcessEnvironmentBlock : 0x00000003°01292000 PEB
+0x068 LastErrorValue : 0

+0x06c CountOfOwnedCriticalSections : 0
+0x070 CsrClientThread : (null)

+0x078 Win32ThreadInfo : (null)

+0x080 User32Reserved : [26] O

Es interesante resaltar que en el offset 0x60 se encuentra la direccién del PEB
vista anteriormente. En el caso de un proceso de 32 bits el offset es de 0x30.
Asi es como se puede obtener la direccién PEB mediante programacion.

Ensamblador x86

Registros

E1 x86 es una arquitectura en la que el procesador utiliza principalmente regis-
tros de 32 bits para almacenar informacién. Cada registro contiene un nimero
codificado en 32 bits, aunque este nimero puede verse como dos de 16 bits o
4 de 8 bits. Para mejorar su comprensién, ilustraremos este punto con un
ejemplo.

Ciberseguridad y malwares

Deteccion, analisis y Threat Intelligence

El nimero hexadecimal 0xCODEBASE es un entero de 32 bits. En efecto, puede
representarse por los siguientes 32 bits:

Hexadecimal C 0 D E B A 5 E
Binario 1100 |0000 (1101 |1110 {1011 {1010 (0101 {1110

Puede verse como dos enteros de 16 bits, 0xCODE y 0xBASE, o como cuatro
enteros de 8 bits, 0xC0, 0xDE, 0xBA y Ox5E. Es importante habituarse a reali-
zar este pequeno ejercicio, pues el ensamblador hace a menudo un uso abusivo
de estas distintas representaciones.

Para facilitar la explicacién, se utilizan comUnmente términos especificos para
distinguir estos ntimeros de distintos tamafios: un byte es un ntmero de
8 bits; una palabra es un nimero de 16 bits, es decir, 2 bytes; un double es un
numero de 32 bits, es decir, dos palabras o 4 bytes.

Las arquitecturas x86 presentan principalmente 16 registros diferentes que se
dividen en cinco tipos: registros generales, registros de indice, registros de
punteros, registros de segmentos y por tltimo los registros de estado o bande-
ras (flags en inglés).

Registros generales

Existen cuatro registros de este tipo: EAX, EBX, ECX y EDX.

Estos registros suman 32 bits, pero pueden descomponerse en subregistros
mads pequefios. En este caso, su notacién cambia. He aqui un ejemplo para
EAX:

AX
AL ‘ AH ‘

0 7 15 23 31

Las cifras debajo de la ruta corresponden a los bits del registro. La E presente
al inicio de cada registro corresponde a Extended (Extendido). Los 32 bits son
una especie de extensioén de los 16 bits, de modo que los registros mantienen
los mismos nombres agregando una E delante.

© Editions ENI - All rights reserved

Ingenieria inversa 187
Capitulo 3

Como anécdota diremos que estas notaciones barbaras provienen de las pri-
meras arquitecturas de 8 bits, que inclufan 4 registros generales: A, B, Cy D.
Con la aparicién de las maquinas de 16 bits, se utilizaba la notacién AX, BX,
CX y DX, donde la X significaba eXtended. Cada uno de estos registros se
descomponia en dos registros de 8 bits: Low para la parte inferior y High para
la superior; de ahi las notaciones AL y AH. Cuando se pasé a una arquitectura
de 32 bits, se utilizé el mismo mecanismo: se agregd una E de Extended como
prefijo de todos estos registros para mantener la coherencia con las notaciones
anteriores.

Generalmente, estos registros tienen un uso especifico. Sin embargo, tenga en
cuenta que su uso puede cambiar y, por lo tanto, no esta garantizado.

El registro EAX se utiliza para realizar célculos. El registro EBX se utiliza a
menudo para acceder a matrices (arrays). El registro ECX se usa frecuente-
mente como contador de bucles. EDX se utiliza como extensién de EAX para
almacenar més informacién virtualmente.

Reqistros de indice

Existen dos registros de indice: EDI y ESI.

Estos registros utilizan 32 bits, aunque pueden igualmente descomponerse en
subregistros. He aqui un ejemplo para EDI:

DI ‘

0 7 15 23 31

Las cifras por debajo representan el ndmero de bits.

Estos registros se utilizan por lo general para manipular cadenas de caracteres
o copias en memoria; la D de EDI significa "Destino" (Destination) y la "S" de
ESI significa Origen o fuente (Source). De este modo, cuando se realiza una
copia en memoria podemos observar a menudo que EDI representa el puntero
hacia la zona de memoria de destino y ESI representa el puntero hacia la zona
de memoria de origen. Cabe destacar que, si bien los compiladores respetan a
menudo esta convencién, no siempre ocurre asi.

Ciberseguridad y malwares

Deteccion, analisis y Threat Intelligence

Registros de punteros

Existen tres registros de punteros: EBP, ESP y EIP.

Estos registros pueden igualmente descomponerse en subregistros. He aqui un
ejemplo para el registro EBP:

BP |

0 7 15 23 31

Las cifras representan los bits del registro. Estos registros son registros parti-
culares. He aqui el uso de cada uno de ellos:

— El registro EBP contiene una direccién que apunta a la base de la pila, es
decir, el limite entre los argumentos y las variables locales. Este registro
permite acceder, generalmente, a los datos apilados en memoria en la pila
(stack). EBP permite recuperar datos en memoria.

— El registro ESP contiene la direccién actual de la parte superior de la pila.
Este puntero designa la zona de la pila donde se copiardn los datos para
ponerlos en la memoria de pila. ESP permite almacenar datos en memoria.

— El registro EIP contiene la direccién de la siguiente instruccién para
ejecutar.

Estos registros se utilizan de manera implicita y generalmente no se pueden
modificar por las funciones del programa.

Registros de segmentos

Existen seis registros de segmentos: CS, DS, ES, ES, GS, SS.

Estos registros son de 16 bits utilizados para almacenar los valores.

© Editions ENI - All rights reserved

Ingenieria inversa

Capitulo 3

Registro de estado o banderas

Este registro de 32 bits se llama EFLAGS.

Algunas banderas estan reservadas por los fabricantes y no pueden utilizarse;
tienen un valor predefinido. A continuacién, se muestra un diagrama del
contenido de este registro con los nombres de las banderas o sus valores reser-

vados:

Bit Nombre de 1a bandera

0 CF (Carry Flag; acarreo)

1 1 (reservada)

2 PF (Parity Flag; paridad)

3 0 (reservada)

4 AF (Auxiliary carry Flag; acarreo auxiliar)

5 0 (reservada)

6 ZF (Zero Flag; cero)

7 SF (Sign Flag; signo)

8 TF (Task Flag; tarea)

9 IF (Interrupt Flag; interrupcién)

10 DF (Direction Flag; direccién)

11 OF (Overflow Flag; desbordamiento)

12 IOPL (I/O Privilege Level; nivel de privilegio de E/S)
13 (nivel de privilegio de E/S)

14 NT (Nested Task; tarea anidada)

15 0 (reservada)

16 RF (Resume Flag; reiniciar tarea)

17 VM (Virtual 8086 Mode; modo virtual)

18 AC (Alignement Check; control de alineacién)
19 VIE (Virtual Interrupt Flag; interrupcién virtual)
20 VIP (Virtual Interrupt Pending; interrupcién virtual pendiente)

189

