Incertidumbre e imprecisión Incertidumbre Imprecisión

Es muy importante distinguir dos conceptos: incertidumbre e imprecisión. En efecto, cada uno va a estar asociado a una técnica de inteligencia artificial diferente.

1. Incertidumbre y probabilidad

La incertidumbre es, evidentemente, lo contrario de la certidumbre. Por ejemplo, la regla "Si va a llover, entonces cogeré el paraguas" es segura (al 100%): mojarse no resulta agradable. Por el contrario, el enunciado "Mañana debería llover" es incierto: el parte meteorológico ha podido anunciar lluvias, pero nada obliga a que tenga que llover necesariamente. Podríamos decir que la probabilidad de que llueva es del 80%, por ejemplo. Cualquier enunciado cuya probabilidad sea diferente al 100% es incierto.

2. Imprecisión y subjetividad

Por el contrario, la imprecisión se manifiesta cuando falta... ¡precisión! En los hechos, esto se traduce en enunciados que resulta difícil evaluar: parecen subjetivos. Por ejemplo, en la frase "Si hace mucho calor, entonces no cogeré chaqueta", la imprecisión se sitúa en la expresión "mucho calor".

Es cierto que si hace "mucho calor" no cogeré la chaqueta, en cuyo caso no hay incertidumbre. Pero, ¿hace mucho calor a 35º? Probablemente sí. ¿Y a 30º? De algún modo, podríamos afirmar que hace "mucho calor" a partir de 30º. Pero en este caso, ¿qué ocurre...

Si desea saber más, le proponemos el siguiente libro:
couv_DPT2INT.png
60-signet.svg
Versión impresa
20-ecran_lettre.svg
Versión online
41-logo_abonnement.svg
En ilimitado con la suscripción ENI
130-boutique.svg
En la tienda oficial de ENI
Anterior
Presentación del capítulo
Siguiente
Conjuntos difusos y grados de pertenencia