1.1
1.1.1

Capitulo 3-3
Modelo de objetos

. Todo es un objeto

Principios
Qué sentido dar a «objeton

Python es un lenguaje que utiliza varios paradigmas y, entre ellos, el paradigma orientado
a objetos. Este se elaboré durante los afios 1970 y es, ante todo, un concepto. Un objeto
representa:
— un objeto fisico:

— parcela de terreno, bien inmueble, apartamento, propietario, inquilino...;

— coche, piezas de un coche, conductor, pasajero...;

— biblioteca, libro, pgina de un libro...;

— dispositivo de hardware, robot...;
— un objeto informatico:

— archivo (imagen, documento de texto, sonido, video...);

— servicio (servidor, cliente, sitio de Internet, servicio web...);

—un flujo de datos, pool de conexiones...;
— un concepto:

— portador de alguna nocién que pueda compartir;

— secuenciador, ordenador, analizador de datos...

261

262

1.1.2

Python 3

Los fundamentos del lenguaje

B Observacion

Aprovechamos para llamar la atencién del lector sobre ciertos aspectos cognitivos: a
partir del momento en que se modelizan personas como objetos, es fdcil olvidar que
detrds del cddigo hay seres vivos que piensan, y cuya libertad puede ser limitada por
las elecciones que se hacen sobre la manera de modelizar, la cantidad o la calidad
de las informaciones que se decide tratar o conservar.

Aqui vemos un ejemplo muy simple y concreto: un gestor de horarios que solo permite
crear franjas cada media hora puede tener una repercusion real sobre el funciona-
miento de un servicio que necesita una granularidad mds fina. Por lo tanto, influye de
manera muy negativa en los usuarios que, antes de la llegada del software, tenian
horarios que permitian mads libertad.

Ademds, a partirdel momento en que almacena datos de sus usuarios, es responsable
de su conservacion y seguridad; por eso tiene que asegurarse de que no se puedan
filtrar, robar o incluso corromper.

Hay organismos que permiten dar una visién correcta de las reglas bdsicas que se
deben seguir para tratar datos de este tipo, y también legislaciones, como el RGPD,
que a su vez determinan algunos principios Utiles.

Para modelizar como objeto, es necesario seguir algunos principios.

Uno de los principios es la encapsulacién de datos. Esto significa que cada objeto posee en
su seno no solo los datos que lo describen y que contiene (bajo la forma de atributos), sino
también el conjunto de métodos necesarios para gestionar sus propios datos (modifica-
cién, actualizacién, comparticién...).

El desarrollo orientado a objetos consiste, simplemente, en crear un conjunto de objetos que
representa de la mejor forma posible aquello que modelan y en gestionar sus interacciones.
Cada funcionalidad se modela, de este modo, bajo la forma de interacciones entre objetos.
De su correcto modelado y de la naturaleza de sus interacciones dependen la calidad del
programa y también su estabilidad y mantenibilidad.

El paradigma orientado a objetos define, entonces, otros mecanismos para dar respuesta a
las distintas probleméticas que se le plantean al desarrollador: polimorfismo, interfaces,
herencia, sobrecarga de métodos, sobrecarga de operadores...

Es aqui donde se diferencian los lenguajes entre si, pues cada uno propone soluciones que
le son propias utilizando o no ciertos mecanismos del lenguaje orientado a objetos y de for-
ma mas o menos fiel a su espiritu.

Adaptacion de la teoria de objetos en Python

En lenguajes como PHP, por ejemplo, se agrega una semdantica de objetos que permite a
los desarrolladores escribir de forma similar a un lenguaje orientado a objetos. Esto se rea-
liza en dos etapas: la posibilidad de declarar clases (con interfaces y herencia simple) y la
posibilidad de crear instancias de estas clases y acceder a los atributos de los métodos. Pero
no es mas que una semantica de objetos, puesto que detrés se trata en realidad de tablas
(que contienen los atributos) que se asocian a una lista de métodos que pueden aplicarse
al objeto.

© Editions ENI - All rights reserved

Modelo de objetos 263
Capitulo 3-3

La implementacién estd, por tanto, muy lejos de un paradigma orientado a objetos,
aunque la semantica esté presente y sea suficiente para este lenguaje.

En los lenguajes orientados a objetos, como Java, el paradigma orientado a objetos esta en
el nicleo del lenguaje y, por tanto, de la gramadtica. Se han realizado adaptaciones del
concepto para amoldarse a distintos escenarios técnicos o a una filosoffa propia del lengua-
je. No se dispone de herencia multiple, y el concepto de interfaz se ha transformado en su
totalidad para ofrecer una alternativa. Como no existen mds que objetos, es necesario
pasar por el proceso de bootstrap y las arquitecturas se han vuelto dificiles o restrictivas
debido a limitaciones técnicas que debian respetarse.

C++ también propone sus propias adaptaciones e innovaciones. El modelo orientado a
objetos que ofrece es la referencia absoluta de un lenguaje de bajo nivel estaticamente tipa-
do.

Estas son las caracteristicas esenciales que diferencian estos lenguajes del lenguaje de pro-
gramacién Python y que hacen que el modelo de objetos de Python sea, necesariamente,
muy diferente.

Pero, ademas de ser diferente, el lenguaje ha tratado de aprovechar sus cualidades basicas
que lo diferencian de otros lenguajes para adaptar completamente la teoria de objetos a su
filosoffa y encontrar aplicaciones particularmente novedosas que permitan proponer un
conjunto a la vez completo, preciso y con buen rendimiento.

Por este motivo se encuentran tantas diferencias. Por tanto, la forma de trabajar de Python
estd completamente adaptada al lenguaje, aunque no puede decirse que el modelo de obje-
tos de Python sea mejor que el de C++, por ejemplo. El modelo de C+ + estéd adaptado a
C++ y el de Python lo estd a Python. Si se hubieran retomado los conceptos de C++ en
Python, estos no habrian encontrado lugar, y viceversa.

Al final, cuando se viene de trabajar en otro lenguaje, adquirir practica puede resultar més
o menos facil en un primer lugar, aunque para comprender realmente las diferencias y suti-
lidades es necesario ir més alld en el modelo de objetos, en la teorfa, y comprender las elec-
ciones realizadas y su adaptacién a las caracteristicas del lenguaje.

Por ello, no se deje sorprende por el hecho de que no existan las palabras clave new o this,
que la firma de los métodos sea diferente, sino comprenda la filosoffa general y saque pro-
vecho de las posibilidades que se ofrecen.

Python se ha creado en un momento en el que los lenguajes de referencia ya existian y
habian marcado su tiempo. Ha aprovechado su experiencia y sacado el mejor provecho. A
dia de hoy, el propio lenguaje Python es una fuente de inspiracién.

1.1.3 Generalidades

El objeto es uno de los pilares esenciales de Python, que decide proporcionar un lenguaje
donde todo es un objeto, con el objetivo de responder de manera sencilla y eficaz a pro-
blemadticas complejas, permitir una gran flexibilidad y ofrecer una gran libertad de accién
a los desarrolladores, como veremos en este capitulo.

Python tiene un Gnico principio, que es «todo es un objeto», lo cual no es simplemente un
concepto genérico. En efecto, si es evidente que una instancia es un objeto, el hecho de que
todo sea un objeto quiere decir que la propia clase es un objeto, que un método es un objeto
y que una funcién es un objeto.

264

1.2
1.2.1

Python 3

Los fundamentos del lenguaje

Esto significa que todas las clases, funciones y métodos disponen de atributos y de méto-
dos particulares, y que pueden modificarse tras su creacién.

De este modo, es posible declarar clases, métodos y funciones de manera imperativa,
mediante el uso de las palabras clave class o def, aunque también pueden declararse por
asignacién, abriendo asf posibilidades muy interesantes.

Pero Python no es un lenguaje doctrinal con una Gnica visién y buscando imponerla. Si
bien el objeto esté en el nicleo de sus funcionalidades, los demds paradigmas no se han
rechazado o dejado de lado. Son tan importantes los unos como los otros.

En efecto, en funcién de la tarea que quiera cumplir, habrd una Gnica manera evidente de
proceder y aun asf se podra recurrir a uno de los tres paradigmas: imperativo, orientado a
objetos o funcional.

Python no preconiza la superioridad del objeto, ni busca impedir la programacién impera-
tiva para obligar a que se utilicen objetos simplemente porque el objeto sea un enfoque
més moderno o mas de moda.

Es, por otro lado, interesante, cuando se conocen varios lenguajes, ver cémo Python es
capaz de vincular la experiencia imperativa con la orientacién a objetos y hacer emerger lo
mejor de cada una.

Los debutantes que ya conozcan alguno de los paradigmas podran desarrollar utilizando
preferentemente el paradigma que conozcan y, a continuacién, descubrir los demdas poco
a poco, en funcién de su experiencia.

Clases

Introduccion

Una clase se define, simplemente, asf:

>>> class A:
pass

Esta definicién es de naturaleza imperativa, en el sentido de que una clase es un bloque que
contiene un conjunto de instrucciones imperativas que se recorren y ejecutan unas detrés
de otras.

Estas instrucciones pueden ser un docstring, por ejemplo:

>>> class A:
"""Descripcién de mi clase"""

Existen, en realidad, dos formas de describir una clase: bien utilizando este modo impera-
tivo, descriptivo, que pone de relieve la encapsulacién (utilizada a menudo), o bien
mediante un prototipo, que también permite Python, de manera similar a
JavaScript, como veremos més adelante.

© Editions ENI - All rights reserved

Modelo de objetos 265
Capitulo 3-3

1.2.2 Declaracion imperativa de una clase

Una clase puede contener instrucciones declarando una variable, que se convierte en un
atributo de clase, o una funcién, que se convierte en un método.

>>> class A:
"""Descripcién de mi clase"""
atributo = "Esto es un atributo"
def método(self, *args, **kwargs):
return "Esto es un método"

Una clase encapsula, asi, con claridad todos sus datos, que son accesibles:

>>> A. doc_

'Descripcién de mi clase'

>>> A.atributo

'Esto es un atributo’

>>> A.método

<function método at 0x257ea68>

De este modo, el método es un atributo como los demds, pues cuando se accede sin invo-
carlo se devuelve la instancia correspondiente al método.

La Gnica complejidad en la creacién de clases se desprende de la complejidad funcional, del
correcto modelado de objetos y de sus relaciones. Se recomienda trabajar de modo que los
datos de una clase o de una instancia le pertenezcan y estén gestionados por la propia ins-
tancia, y no desde el exterior.

1.2.3 Instancia
Creemos una instancia:
| >>> a = A()
Y accedamos al contenido de la instancia, definido en la clase:

>>> a. doc_

'Descripcidén de mi clase'

>>> a.atributo

'Esto es un atributo’

>>> a.método

<bound method A.método of < main .A object at 0x25dfa90>>

Los atributos y métodos de la clase estan, ahora, disponibles para la instancia, puesto que
incluye un vinculo hacia los elementos de la clase, tal y como sugiere el término «bound».
Como puede verse, el hecho de acceder al método devuelve, simplemente, un objeto,
aunque no invoca al método. Para realizar dicha llamada es necesario agregar los paréntesis
y pasar los eventuales argumentos.

Recordemos que la firma del método espera un pardmetro. Este pardmetro representa, en
realidad, la instancia. El vinculo entre el primer argumento del método definido en la clase
y la instancia se realiza de manera natural:

>>> a.método ()
'Esto es un método'

Python 3

Los fundamentos del lenguaje

Es la gramética del lenguaje la encargada de informar el primer argumento situando la ins-
tancia. En Python no se hace magia, no existe ninguna variable mégica que represente
automdticamente la instancia en curso; esta Gltima estéd realmente visible y presente en la
firma. Por convencién, se denomina sel£.

La nocién de interconexién entre una instancia y su clase es un elemento importante que
debe dominarse. En efecto, si de una u otra manera se modifican los elementos de la clase,
entonces se modifican también los elementos de la instancia:

>>> class B:
a = 'Otro atributo’
def m(self, *args, **kwargs):
return 'Otro método'

>>> A.atributo = B.a
>>> A.método = B.m
>>> a.atributo

'Otro atributo'

>>> a.método ()

'Otro método'

Igual que la instancia no tiene su propio atributo, su valor es el de la clase y, como el atri-
buto de la clase es dindmico, cualquier cambio realizado sobre este afectar4 a la instancia.
No tener claro este aspecto puede llevarnos a generar errores inesperados. No obstante,
preste atencién: no es asf como declaramos los atributos Gnicos de cada instancia, sino que
se pasan al constructor, como veremos mas adelante.

Informar los atributos directamente a nivel de la clase sirve, también, para que se compar-
tan entre todas las instancias. Son, de algin modo, atributos de clase, en la seméntica de
Python, lo que equivale a atributos estdticos en la mayoria de los lenguajes.

Si bien estos atributos son de la clase, nada impide que un atributo con el mismo nombre
aparezca en una instancia.

En este momento, podemos considerar que el atributo de la clase contiene el valor por defecto
y el atributo de la instancia contiene el valor asociado de manera durable a la instancia.
Cuando el atributo de una instancia se modifica y recibe otro valor diferente al de la clase,
se encuentra desconectado del atributo de la clase.

>>> a.atributo = 'Atributo de instancia’
>>> A.atributo

'Otro atributo’

>>> a.atributo

'Atributo de instancia'

El atributo de la instancia est4 conectado al de la clase. Ahora:
I >>> a.atributo = A.atributo
Nos contentamos con realizar una asignacién, sin cambiar de valor:

>>> A.atributo = 'B'
>>> a.atributo
'A'

© Editions ENI - All rights reserved

Modelo de objetos 267
Capitulo 3-3

1.2.4 Objeto en curso

Se denomina objeto «en curso» a la instancia en curso de la clase.

En Python, dicha instancia se denomina self, aunque no es mds que una convencién. Lo
que importa es que el objeto en curso es, sistemdticamente, el primer objeto que recibe
como pardmetro un método, y dicho vinculo se establece de forma automaética.

En la mayorfa de los lenguajes existe una palabra clave this que permite ejecutar un
método como una funcién, un poco de forma maégica, pues this representa a la instancia
en curso.

Como a Python no le gusta la magia y quiere preservar la legibilidad, se contenta con exigir
un primer argumento que representa a la instancia y el vinculo se establece a bajo nivel,
pero no hay ningtn elemento méagico de por medio. Lo que se utiliza en la funcién es, sim-
plemente, variables que se presentan en la firma del método.

Cabe destacar que no se utiliza la palabra clave this ni la palabra clave new para crear la
instancia.

1.2.5 Declaracion por prototipo de una clase

La programacién orientada a objetos por prototipo consiste en crear una clase y, a conti-
nuacién, asignarle atributos y métodos como se hace, por ejemplo, en JavaScript.

Esto es muy diferente a la programacién orientada a objetos cldsica, puesto que nos
contentamos con declarar una clase que es un recipiente vacio con un nombre y, a conti-
nuacion, se le agregan atributos y métodos.

Estos métodos pueden ser, para ciertos lenguajes, simples funciones que transforman un
objeto que se pasa como pardmetro o que reciben un objeto como pardmetro para devolver
otro objeto sin que exista ningtn vinculo entre ellos, salvo el hecho de agregarse en la mis-
ma clase.

El recurso de una palabra clave permite, por tanto, crear un vinculo artificial pero sufi-
ciente entre los métodos de una misma clase y sus propiedades. Esto puede parecer una
agregacién de propiedades y de funciones similares a lo que serfan atributos y métodos.
Seménticamente, el uso de una clase asi es idéntico al de una clase declarada de manera
clasica, aunque los mecanismos internos sean totalmente distintos.

Esto no entra, en absoluto, en el espiritu de la programacién orientada a objetos, pues si
bien la encapsulacién se resuelve de una manera diferente, aunque comprensible, los
demds mecanismos tales como la instanciacién, la diferenciacién de instancias o el poli-
morfismo, por ejemplo, no pueden resolverse, o bien se resuelven de manera poco
satisfactoria. Ademads, ciertos lenguajes hacen todas las clases puramente estéticas.

Estos lenguajes son, entonces, una interpretacién del paradigma orientado a objetos bas-
tante reducida, aunque por el contrario representan una ventaja indiscutible, que es la
capacidad evolutiva, dado que, en cualquier momento, es posible agregar o modificar fun-
ciones.

En efecto, en la mayoria de los lenguajes, una vez declarada la clase, es imposible agregar
nuevos métodos o atributos. En ocasiones, una permisividad natural permite
agregar atributos de manera lateral. No obstante, esto es una limitacién importante que
hace que la programacién orientada a objetos por prototipo encuentre su verdadero lugar.

268 Python 3

Los fundamentos del lenguaje

En lo relativo a Python, esto es muy distinto. Por un lado, su lectura extrema del
paradigma orientado a objetos hace que las propias clases, funciones y métodos sean
objetos sobre los que es posible actuar como con cualquier otro objeto. Por otro lado, el
hecho de que sea dindmico implica que, en todo momento, sea posible realizar una
asignacién o una modificacién.

De este modo, es posible declarar una clase y, a continuacién, afiadir més tarde un atributo,
por agregacién. Para comenzar, creemos una clase de manera declarativa, como hemos
hecho hasta ahora:

>>> class Declarativa (object) :
"""Clase escrita de manera declarativa"""

atributo de clase = 42

def init (self, name):
self.name = name
self.subs = []

def str (self):
return "{} ({})".format (self.name, ", ".join(self.subs))

def mostrar (self):
print (self)

Ahora podemos utilizar este objeto:

>>> a = Declarativa ("test")

>>> a.subs.append("cosa", "chisme")
>>> print (a)

test (cosa, chisme)

>> dir (a)

[' class ', ' delattr ', ' dict ', ' dir ', ' doc ',

' eq ', ' format ', ' ge ', ' getattribute ', ' gt ',
' _hash ', ' init ', ' le ', ' 1t ', ' module ‘',

' ne ', ' new ', ' reduce ', ' reduce ex ', ' repr ',
' setattr ', ' sizeof ', ' str ', ' subclasshook ',

' weakref ', 'atributo de clase']

>>> Declarativa.mostrar
<function Declarativa.mostrar at 0x7fb456895bf8>

Presentaremos, ahora, el cédigo equivalente al anterior, escrito mediante prototipo. Vere-
mos que primero se escriben los métodos:

>>> def proto_ init_ (self, name):
self.name = name
self.subs = []

>>> def proto str (self):
return "{} ({})".format (self.name, ", ".join(self.subs))

>>> Prototipo = type ("Prototipo", (object,), {

© Editions ENI - All rights reserved

1.2.6

Modelo de objetos
Capitulo 3-3

" init ": proto_ init ,

" str ": proto str ,
"atributo de clase": 42})

También es posible agregar funciones mas tarde:
>>> def mostrar (self):
print (self)
>>> Prototipo.mostrar = mostrar

El resultado es completamente idéntico a nuestra clase declarada de manera clésica:

>>> dir (Prototipo)

[' class ', ' delattr ', ' dict ', ' dir ', ' doc ',
' eq ', ' format ', ' ge ', ' getattribute ', ' gt ',
' _hash ', ' init ', ' le ', ' 1t ', ' module ‘',

' ne ', ' new ', ' reduce ', ' reduce ex ', ' repr ',
' setattr ', ' sizeof ', ' str ', ' subclasshook ',

' weakref ', 'atributo de clase']

Esta forma de operar no es un error de programacién o de disefo, es algo natural y que esta
previsto en Python.

Como un método no es mas que una funcién encapsulada en una clase (si bien sigue
algunas reglas particulares suplementarias que se presentan en la seccién Métodos),
Python no tiene ningtin problema con esta forma de trabajar.

>>> def m(self):
return "Definido por prototipo"

>>> A.método = m
Esta forma de trabajar es bastante diferente a la de los lenguajes especificamente cualifi-
cados como «programacién orientada a objetos por prototipo», como por ejemplo
JavaScript, uno de los més conocidos y utilizados en este dominio.
Sin embargo, es bastante limitada en Python, a parte de las librerfas que utilizan masiva-
mente nociones complejas, tales como metaclases; por ejemplo, para resolver requisitos
especificos de disefio.
La gran ventaja de esta técnica es que permite modificar las clases en cualquier momento,
o extenderlas tanto como se quiera. Podemos perfectamente declarar una clase de la mane-
ra habitual, y después, en otro médulo importarla y agregarle métodos o atributos.

Tuplas con nombre

Existen muchos casos de uso en los que se necesita la flexibilidad de un objeto pero no se
desea pasar demasiado tiempo escribiendo una clase. Para ello, existen las tuplas con
nombre:

>>> from collections import namedtuple
>>> Punto = namedtuple ('Punto', ['x', 'y'l)

Punto es una clase particular que dispone de dos atributos x e y. Puede instanciarse:
I > p = Punto(4, 2)

269

11

Capitulo 3
Preparar sus datos para sacarles

todo su potencial

La calidad de los datos: un recordatorio

La calidad de los datos es un elemento fundamental que hay que tener en
cuenta antes de abordar técnicas de limpieza y procesamiento de datos. Para
cualquier organizacién que quiera tomar decisiones con conocimiento de cau-
sa y sacar el maximo partido de su informacién, este aspecto no puede pasarse
por alto. Todos los procedimientos que examinaremos en este capitulo tienen
un Gnico objetivo: proporcionar a los distintos equipos datos fiables.

¢ Qué es la calidad de los datos?

La calidad de los datos refleja la capacidad de una organizacién para mantener
la exactitud y sostenibilidad de su informacién a lo largo del tiempo. Como ex-
pertos en la materia, debemos ofrecer datos irreprochables, basados en indi-
cadores claros y facilmente interpretables. Empezaremos por examinar en
detalle los seis criterios que definen las dimensiones de calidad de los datos

(DQD).

Esta nocién engloba tanto las caracteristicas intrinsecas de los datos como los
métodos aplicados para garantizarlas. En esencia, la calidad de los datos se de-
fine por su capacidad para servir a los fines previstos.

— 135

136 —_Business Intelligence con Python

Cree sus propias herramientas de Bl de principio a fin

Una iniciativa de calidad de datos es un proceso a largo plazo, integrado en
todo el ciclo de vida de los datos. Requiere un cambio cultural en la forma
en que la organizacién gestiona sus datos. Es un enfoque global que afecta a
toda la empresa y a sus préacticas cotidianas.

Es importante sefalar que la introduccién de datos erréneos en un proceso
producird inevitablemente datos inexactos en la salida. Por consiguiente, una
estrategia basada en datos de mala calidad dard lugar a decisiones ineficaces,
con consecuencias directas en el retorno de la inversién.

AS YOU CAN SEE, OUR TOP MARKETS ARE
UNITED STATES, CANADA, USA AND THE U.S.

B Dataedo fioh@ Datsedo

Créditos: hitps://dataedo.com/

© Editions ENI - All rights reserved

1.2

Preparar sus datos para sacarles todo su potencial —]37
Capitulo 3

¢Por qué es importante la DQD?

La calidad de los datos suele verse comprometida por diversos factores. Entre
ellos se encuentra el error humano en el momento de su introduccién inicial.
Errores tipogréficos, diferentes convenciones de nomenclatura entre fuentes
de datos o abreviaturas incorrectas son una fuente frecuente de problemas.
Ademas, una informacién inicialmente exacta puede quedar obsoleta con el
tiempo, al cambiar el contexto.

Si la calidad de los datos se ve comprometida, habrd consecuencias costosas
para las empresas. He aqui algunos ejemplos concretos de problemas fre-
cuentes y sus repercusiones:

— Errores de introduccién de datos: en 2018, un empleado de Samsung Securi-
ties cometié un monumental error de introduccién de datos al distribuir di-
videndos, emitiendo inadvertidamente 2.800 millones de acciones
«fantasmas», unas treinta veces el nimero total de acciones existentes. Este
error provocé una perturbacién masiva del mercado y una pérdida de
confianza en la gestién de la empresa, lo que obligd a adoptar costosas me-
didas correctoras. [Fuente: https://www.sirfull.com/en/blog/poor-data-
quality-impacts/]

— Incoherencias en los datos: en 2022, Unity Technologies se enfrenté a un
grave problema con su herramienta de publicidad dirigida Pinpointer. Los
datos inexactos de un cliente importante corrompieron los modelos de IA,
lo que provocé una pérdida de ingresos de 110 millones de délares y una cai-
da del 37 % en el valor de las acciones de la empresa. [Fuente: https://zee-
nea.com/what-are-the-most-common-data-quality-issues-and-how-can-
you-solve-them/]

138 —_Business Intelligence con Python

Cree sus propias herramientas de Bl de principio a fin

— Datos obsoletos: Tesco, el gigante britanico de la distribucién, tuvo proble-
mas de inexactitud en sus datos de existencias, lo que provocé frecuentes
desabastecimientos en sus tiendas. Estas imprecisiones provocaron pérdidas
de ventas, insatisfaccién de los clientes y un impacto negativo directo en el
volumen de negocios de la empresa. [Fuente: https://www.sirfull.com/en/
blog/poor-data-quality-impacts/]

— Errores criticos en los datos: entre marzo y julio de 2017, Equifax gener6 pu-
ntuaciones crediticias incorrectas para millones de consumidores debido a
datos erréneos. La empresa se enfrent6 a multas reglamentarias, demandas
judiciales y una pérdida de credibilidad, lo que puso en peligro las decisiones
de concesién de préstamos y erosiond la confianza del ptblico. [Fuente en
francés: https://www.datagalaxy.com/fr/blog/big-data-attention-aux-
donnees-de-mauvaise-qualite/]

— Datos de localizacién inexactos: Royal Dutch Shell tuvo errores en los datos
de localizacién de sus pozos petroliferos, lo que provocé una perforacién
ineficaz. Estos errores supusieron millones de délares en costes adicionales
y una considerable pérdida de tiempo debido a una perforacién incorrecta.
[Fuente en francés: https://solutions-business-intelligence.fr/data-quality-
enjeux-et-bonnes-pratiques/]

Cada uno de estos problemas de calidad de datos tuvo un impacto significa-
tivo en las operaciones, la reputacién y los resultados financieros de las empre-
sas implicadas. Estos ejemplos ponen de relieve la importancia de invertir en
procesos sélidos de gestién de la calidad de los datos para evitar estos costosos
escollos.

© Editions ENI - All rights reserved

Preparar sus datos para sacarles todo su potencial —__]39
Capitulo 3

1.3 Los principales criterios de la DQD

Veamos los principales criterios de la DQD, nicleo de cualquier estrategia efi-
caz de gestién de datos.

¢ ompleteness

Dota

Qua.htl/
Dimensions

1.3.1 Precisidon (accuracy)

La precisién es el grado en que los datos almacenados se ajustan a los valores
reales que deben representar. Mide lo cerca que esté el valor almacenado del
valor real correcto o aceptado.

En el sector bancario, imaginemos un error en el célculo de los intereses de un

préstamo hipotecario. Si el tipo de interés se registra incorrectamente como

3,5 % en lugar de 3,05 %, esto podria dar lugar a que se cobrara de més a miles
e clientes. No solo podria acarrear importantes pérdidas financieras para e

de clientes. No solo pod tant didas £ |

banco en caso de reembolso, sino que también podria dafiar gravemente su re-

7
putacién y dar lugar a posibles sanciones.

140 —Business Intelligence con Python

1.3.2

1.3.3

Cree sus propias herramientas de Bl de principio a fin

Para garantizar la exactitud, las empresas pueden poner en marcha procesos

de validacién de datos, comprobaciones cruzadas automatizadas y auditorfas
]

periddicas. El uso de inteligencia artificial para detectar anomalfas también

puede ser eficaz.

Integridad (completeness)

La integridad es el grado de presencia de todos los elementos de datos necesa-
rios en un conjunto de datos concreto. Evalia el grado en que se incluyen to-
dos los valores requeridos y estan presentes todos los registros que deberian
estarlo.

En el campo de la investigaciéon médica, imaginemos un estudio sobre la efica-
cia de un nuevo tratamiento contra el cancer. Silos datos de seguimiento pos-
teriores al tratamiento estdn incompletos para un grupo significativo de
pacientes, las conclusiones del estudio podrian estar distorsionadas. Las deci-
siones cruciales sobre si aprobar o rechazar el tratamiento podrian basarse en
informacién parcial, lo que podria afectar a la vida de muchos pacientes.

El uso de campos obligatorios en los formularios de introduccién de datos, la
creacién de alertas para los datos que faltan y la aplicacién de procesos sis-
tematicos de recopilacién de datos pueden mejorar la exhaustividad.

Coherencia (consistency)

La coherencia se refiere a la ausencia de contradicciones en los datos dentro de
un conjunto de datos o entre distintos conjuntos de datos. Garantiza que los
datos sean uniformes y légicamente compatibles en todos los sistemas, aplica-
ciones y procesos de la organizacién.

En una empresa multinacional, imagine que el departamento de recursos hu-
manos y el de finanzas utilizan sistemas diferentes para gestionar la informa-
cién de los empleados. Si un empleado cambia de trabajo y esta informacién
solo se actualiza en el sistema de recursos humanos, podrian producirse
errores en las néminas, las prestaciones e incluso en la planificacién estratégi-
ca de recursos humanos.

© Editions ENI - All rights reserved

Preparar sus datos para sacarles todo su potencial —]4]
Capitulo 3

El uso de un sistema de informacién integrado, la aplicacién de procesos au-
tomaticos de sincronizacién entre distintos sistemas y el establecimiento de
normas coherentes de gestiéon de datos en toda la empresa pueden mejorar la
coherencia.

1.3.4 Vigencia (timeliness)

La vigencia mide el grado en que los datos estén actualizados y disponibles en
el plazo requerido para su uso previsto. Evalta la frescura de los datos en rela-
cién con el momento en que se crearon o actualizaron por dltima vez, asf
como su disponibilidad en el momento en que se necesitan para los procesos
empresariales.

En el trading de alta frecuencia, donde las decisiones de compra y venta se to-
man en milisegundos, la vigencia de los datos es fundamental. Un retraso de
solo unos segundos en la actualizacién de los precios de las acciones puede
acarrear considerables pérdidas financieras. Por ejemplo, si un acontecimiento
importante afecta a la cotizacién de una accién, pero esta informacién no se
refleja inmediatamente en los datos utilizados por los algoritmos de negocia-
cién, podrian tomarse decisiones de inversién desastrosas.

El uso de sistemas de procesamiento en tiempo real, la implantacién de proce-
sos automaéticos de actualizacién de datos y la optimizacién de los flujos de
datos pueden mejorar la puntualidad.

1.3.5 Validez (validity)

La validez es la medida en que los datos se ajustan a las normas empresariales
definidas, los formatos especificados y las restricciones del dominio. Garantiza
que los valores de los datos cumplen los criterios sintécticos y semanticos es-
tablecidos para el tipo de datos en cuestién.

En el sector de la aviacién, imaginemos un sistema de reservas que acepte una
fecha de vuelo anterior a la actual. Esto podria acarrear graves problemas en la
planificacién de vuelos, la gestién de tripulaciones y, potencialmente, compro-
meter la seguridad si estos datos no validos se utilizan en otros sistemas criti-
COs.

142_____Business Intelligence con Python

1.3.6

2.1

Cree sus propias herramientas de Bl de principio a fin

La aplicacién de controles de validacién estrictos en las interfaces de entrada,
el uso de restricciones a nivel de base de datos y el establecimiento de procesos
periédicos de limpieza de datos pueden mejorar la validez.

Singularidad (unigueness)

La singularidad es la propiedad de que cada entidad distinta del mundo real se
represente unay solo una vez en el conjunto de datos. Garantiza que no haya
duplicados involuntarios ni redundancias en los registros de datos.

En el sector sanitario, imagine un paciente con varios historiales médicos
debido a duplicados en la base de datos. Esto podria dar lugar a graves errores
en el tratamiento si un médico no tiene acceso al historial médico completo
del paciente. Por ejemplo, podrian pasarse por alto alergias o interacciones
entre medicamentos, poniendo en riesgo la salud del paciente.

El uso de identificadores tnicos, la aplicacién de procesos de desduplicacién y
la implantacién de controles estrictos a la hora de crear nuevos registros pue-
den mejorar la singularidad de los datos.

Depuracion de datos

Primeros pasos con la biblioteca pandas

pandas es una potente y versétil biblioteca de Python disefiada para la mani-
pulacién y el andlisis de datos. Fue desarrollada por Wes McKinney, un inves-
tigador que empez6 a construir lo que se convertirfa en pandas. El nombre
«pandas» deriva de «Panel Data», un término econométrico para conjuntos de
datos que incluyen observaciones a lo largo de varios periodos.

pandas es particularmente adecuada para trabajar con datos tabulares, simi-
lares a una hoja de célculo de Excel o una tabla SQL. Las principales estructu-
ras de datos gestionadas por esta biblioteca son series, que almacenan datos a
lo largo de una dimensién, y DataFrames, que lo hacen a lo largo de dos dimen-
siones (filas y columnas). Estas estructuras de datos facilitan su manipulacién,
as{ como su limpieza, preprocesamiento, andlisis y visualizacién.

© Editions ENI - All rights reserved

2.2

Preparar sus datos para sacarles todo su potencial —
Capitulo 3

pandas es muy utilizada en el anélisis de datos. A menudo se presenta como
la herramienta ideal para manipular datos que pueden organizarse en filas y
columnas. Es mds, dominar pandas es una habilidad muy buscada por los re-
clutadores, ya que muchas empresas de todos los sectores recurren cada vez
maés a la ciencia de datos.

Existen varias alternativas a pandas, entre ellas polars, dask y cudf. Cada una
de estas soluciones tiene sus ventajas, en particular la velocidad de procesa-
miento en comparacién con pandas. No las trataremos en este libro, ya que
pandas sigue siendo la librerfa més utilizada para el analisis de datos en
Python. Su riqueza y versatilidad, asi como su amplia adopcién en la comuni-
dad de anélisis de datos, la convierten en una herramienta esencial.

Presentacion de nuestro conjunto de datos

En este capitulo, trabajaremos con un conjunto de datos que esté disponible
gratuitamente en la plataforma Kaggle.

El comercio electrénico se ha convertido en un nuevo canal de apoyo al
desarrollo empresarial. A través del comercio electrénico, las empresas pueden
acceder a un mercado méas amplio y establecer una mayor presencia proporcio-
nando canales de distribucién mds baratos y eficientes para sus productos o
servicios. El comercio electrénico también ha cambiado la forma en que las
personas compran y consumen productos y servicios. Muchas personas
recurren a sus ordenadores o dispositivos inteligentes para encargar produc-
tos, que pueden recibir facilmente en sus domicilios.

Se trata de un conjunto de datos de un afio de transacciones de ventas en el
Reino Unido para el comercio electrénico (venta minorista en linea). Esta tien-
da londinense vende regalos y articulos para el hogar para adultos y nifios en
su sitio web desde 2007. Sus clientes proceden de todo el mundo y suelen
hacer compras directas para ellos mismos. También hay pequefias empresas
que compran al por mayor y venden a otros clientes a través de canales mino-
ristas.

